

www.microener.com

MANUEL D'UTILISATION **DU RELAIS S24/T GAMME SMARTLINE**

FDE N°: 20GJ0731141

Rev.		Α	
Page	3	/	56

	Gestion des Modifications				
Rev.	Description	Date	Écrit par	Vérifié par	Approuvé par
Α	Diffusion	19/04/20		LA	LA
Z	Création	13/03/2020	GJ	LA	LA

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page 4 / 56

SOMMAIRE

Présentation générale de la série Smartline S24	5
Spécification du matériel	
Conception du système	6
Module CPU	6
Module d'interface homme-machine (HMI)	8
Description détaillée des modules	10
Description des configurations	11
Fonctions de protection	11
Fonctions de mesure	12
Configuration du matériel	13
Les modules matériels appliqués	14
Découvrir l'appareil	15
Configuration logiciel	17
Fonctions de protection et de contrôle	17
Fonction maximum de courant instantané (IOC50)	18
Fonction maximum de courant temporisé (TOC51)	19
Fonction maximum de courant résiduel (IOC50N)	22
Fonction maximum de courant résiduel temporisé (TOC51N)	23
Fonction maximum de composante inverse de courant (TOC46)	26
Fonction protection différentielle transformateur (DIF87_2w)	28
Fonction image thermique (TTR49L)	31
Fonction détection des courants d'enclenchements (INR68)	34
Fonction déséquilibre de courant (VCB60)	36
Fonction défaillance disjoncteur (BRF50)	37
Fonction logique de déclenchement (TRC94)	38
Fonction contrôle et commande du disjoncteur (CB1Pol)	39
Fonctions de mesure	41
Unité ampèremétrique (CT4)	42
Enregistrement oscillographique	45
Affectation des contacts de déclenchement (TRIP)	46
Assignation des Led de signalisation	47
Schema de raccordement	48
Type de boitiers et de montage du S24/T	49
Communication	53
Caractéristiques générales	54

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page **5 / 56**

PRESENTATION GENERALE DE LA SERIE SMARTLINE S24

Les relais de la série **S24** font partie de la ligne de produits **Smartline**, proposée par Microener.

Ces relais de protection prennent en charge une gamme de protocoles de communication, y compris la norme IEC 61850 sur l'automatisation des postes avec communication horizontale GOOSE, IEC 60870-5-101, IEC 60870-5-103 et Modbus® RTU. La série S24 est disponible en six configurations standards prédéfinies pour s'adapter aux applications de protection et de contrôle commande les plus courantes.

Le relais est équipé d'un enregistreur numérique de perturbations intégré pour un maximum de huit canaux de signaux analogiques et 32 canaux de signaux numériques. Les enregistrements sont stockés dans une mémoire non volatile à partir de laquelle les données peuvent être téléchargées pour une analyse ultérieure des défauts.

Pour fournir des systèmes de contrôle et de surveillance du réseau avec des journaux d'événements de niveau d'alimentation, le relais intègre une mémoire non volatile avec une capacité de stockage de **1000 événements** incluant les horodatages. La mémoire non volatile conserve également ses données au cas où le relais perdrait temporairement son alimentation auxiliaire. Le journal des événements facilite l'analyse détaillée a posteriori des défauts détectés par la protection.

La fonction Supervision du Circuit de Déclenchement (TCS) surveille en permanence la disponibilité et le fonctionnement du circuit de déclenchement. Il permet la détection des circuits ouverts aussi bien lorsque le disjoncteur est en position fermée que lorsqu'il est en position ouverte.

Le programme d'auto-surveillance (Watchdog) intégré du relais surveille en permanence l'état du matériel du relais et le fonctionnement de son logiciel. Tout défaut ou dysfonctionnement détecté seront signalés pour alerter l'opérateur. Lorsqu'un défaut de relais permanent est détecté, les fonctions de protection du relais sont complètement bloquées pour éviter tout mauvais fonctionnement de l'appareil.

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page 6 / 56

SPECIFICATION DU MATERIEL

Conception du système

La gamme de dispositifs de protection **Smartline S24** est une plate-forme matérielle évolutive qui s'adapte à différentes applications. L'échange de données s'effectue via un bus parallèle numérique non multiplexé à haut débit de 16 bits à l'aide d'un module de fond de panier. Chaque module est identifié par son emplacement et il n'y a pas de différence entre les emplacements des modules en termes de fonctionnalité. La seule restriction est la position du module CPU car elle est limitée à la position "CPU". La fonction d'autocontrôle intégrée minimise le risque de dysfonctionnement de l'appareil.

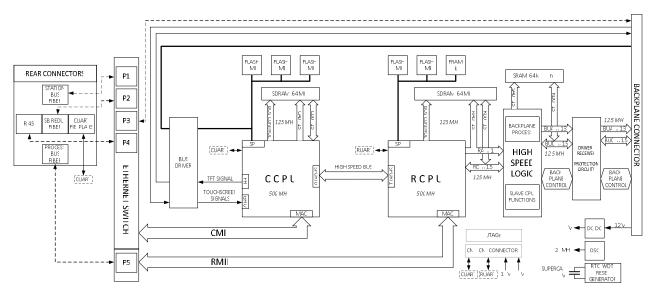


Schéma fonctionnel CPU

Module CPU

Module CPU

Le module CPU contient toutes les fonctions de protection, de commande et de communication de l'appareil Smartline S24. Deux processeurs Blackfin haute performance 500 MHz à dispositifs analogiques hautes performances séparent les fonctions de relais (RDSP) des fonctions de communication et de HMI (CDSP). La communication fiable entre les processeurs s'effectue via un bus interne série synchrone à grande vitesse (SPORT).

Chaque processeur dispose de sa propre mémoire opérationnelle, telle que SDRAM et mémoires flash pour la configuration, le stockage des paramètres et des microprogrammes. Le système d'exploitation du CDSP (uClinux) utilise un système de fichiers flash JFFS robuste, qui permet un fonctionnement à sécurité intégrée et le stockage des fichiers, de la configuration et des paramètres des enregistrements de perturbations.

Manipulation des modules

Le noyau du RDSP fonctionne à 500 MHz et sa vitesse de bus externe est de 125 MHz. La vitesse des données du fond de panier est limitée à environ 20 MHz, ce qui est plus que suffisant pour le débit de données du module. Un élément logique supplémentaire (CPLD et SRAM) sert de pont entre le RDSP et le fond de panier. Le CPLD collecte des échantillons analogiques des modules CT/VT et contrôle également les sorties et entrées de signalisation.

Démarrage rapide

Après la mise sous tension, le processeur du RDSP démarre avec la configuration et les paramètres enregistrés précédemment. En général, la procédure de mise sous tension du RDSP et des fonctions de relais ne prend que quelques secondes. C'est-à-dire qu'il est prêt à trébucher dans ce délai. La procédure de démarrage du CDSP est plus longue parce que son système d'exploitation a besoin de temps pour construire son système de fichiers, initialisant les applications utilisateur telles que les fonctions IHM et la pile logicielle IEC61850.

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page 7 / 56

HMI et tâches de communication

- Serveur WEB embarqué :
 - o Possibilité de mise à jour à distance ou locale du firmware
 - Modification des paramètres utilisateur
 - Liste des événements et enregistrements des perturbations
 - o Gestion des mots de passe
 - o Mesure de données en ligne
 - Commandes
 - o Tâches administratives
- Panneau avant
 - \circ Gestion de l'écran TFT : le menu interactif est disponible via le TFT et l'interface de l'écran tactile.
 - Affichage noir et blanc 128x64 pixels avec 4 touches tactiles
- Clés utilisateur :
 - o Commutateurs tactiles en configuration d'affichage N&B

Le commutateur Ethernet 5 ports intégré permet à Smartline S24 de se connecter aux réseaux IP/Ethernet. Les ports Ethernet suivants sont disponibles :

- o Bus de station (100Base-FX Ethernet) SBW
- o Bus de station redondant (100Base-FX Ethernet) SBR
- o Bus de processus propriétaire (100Base-FX Ethernet)
- o Interface utilisateur Ethernet RJ-45
- o Port 10/100Base-T en option via connecteur RJ-45

Autres communications:

- Interfaces RS422/RS485 (interface galvanique pour la prise en charge des anciens protocoles série ou autres, ASIF)
- Interfaces en plastique ou en fibre de verre pour la prise en charge des protocoles hérités, ASIF

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page 8 / 56

Module d'interface homme-machine (HMI)

Le HMI de l'appareil Smartline S24 se compose des deux parties principales suivantes :

- Module HMI, qui est le panneau avant de l'appareil,
- La fonctionnalité HMI est le serveur Web intégré et le système de menu intuitif accessible via le module HMI. Le serveur web est accessible via le bus de station ou via le connecteur Ethernet RJ-45.

Type de module	Écran	Clés utilisateur	Port de service	Taille du rack	Illustration
HMI+2504	128 x 64 pixels, noir et blanc	4 x tactile	RJ45 10/100Mbit/s	24 HP	COUNTRY OF THE PROPERTY OF THE
Optionnel HMI+2404	3,5″ TFT	4 x tactile	RJ45 10/100Mbit/s	24 HP	ELING

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

9 / 56 Page

Caractéristiques principales du module HMI

Fonction	Description
LED utilisateur 16 pièces	LED circulaires tricolores de 3 mm d'épaisseur, trois couleurs
COM LED	Jaune, LED circulaire de 3 mm indiquant la liaison de communication et l'activité du RJ-45 (sur le panneau avant)
LED de l'appareil	1 pièce trois couleurs, 3 mm circulaire LED Vert : fonctionnement normal de l'appareil Jaune : l'appareil est en état d'alerte Rouge : l'appareil est en état d'erreur
Touches tactiles	Quatre touches mécaniques tactiles (Marche, Arrêt, Page, Acquittement LED)
Buzzer	Signalisation sonore de la pression des touches tactiles
Description des LED	Modifiable par l'utilisateur
Écran 3.5″ ou 128x64 pixels	 128 * 64 pixels N&B affichage N&B Écran TFT 320 × 240 pixels avec écran tactile résistif (en option)
Port de service Ethernet	Interface Ethernet 10/100-Base-T IP56 avec connecteur de type RJ-45

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev.

Page 10 / 56

Description détaillée des modules

En ce qui concerne les autres modules de quincaillerie, vous trouverez une description détaillée dans les manuels de la gamme Protecta (http://www.microener.com).

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A

Page 11 / 56

DESCRIPTION DES CONFIGURATIONS

Le relais S24/T est destiné à la protection des transformateurs de puissance et élévateur.

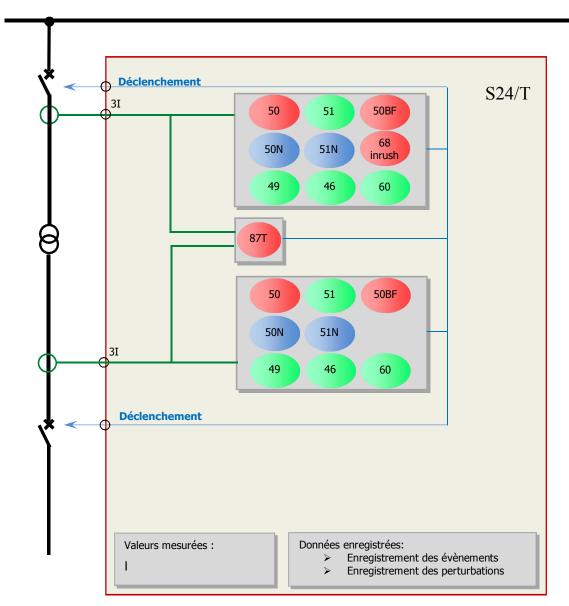
Ce chapitre décrit l'application spécifique de la configuration d'usine de la S24/T.

Fonctions de protection

Le relais S24/T mesure les courants triphasés, la composante de courant à séquence nulle des 2 côtés des 2 enroulements. La fonction principale de cette protection est la différentielle transformateur. Les fonctions de protection sont énumérées dans le tableau ci-dessous.

Fonctions de protection	IEC	ANSI	S24/T
Protection triphasée contre les surintensités instantanées triphasées	I >>>	50	X
Protection triphasée contre les surintensités temporelles triphasées	I >, I >>	51	X
Protection contre les surintensités instantanées résiduelles	Io >>>	50N	X
Protection contre les surintensités de temps résiduelles	Io >, Io >>	51N	X
Protection de déséquilibre de courant	I ₂ >	46	X
Protection thermique	T >	49	X
Protection différentielle transformateur	3I _d T >	87T	X
Détection d'appel	I2h >	68	X
Protection contre le déséquilibre de courant		60	X
Protection contre les pannes de disjoncteur	CBFP	50BF	X

www.microener.com


MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A

Page 12 / 56

Les fonctions configurées sont représentées symboliquement dans la figure ci-dessous.

Fonctions de protection implémentées

Fonctions de mesure

Sur la base des entrées matérielles, les mesures indiquées dans le tableau ci-dessous sont disponibles.

Les mesures	S24/T
Courant (I1, I2, I3, Io)	X
Contacts de voyage supervisés (TCS)	X

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

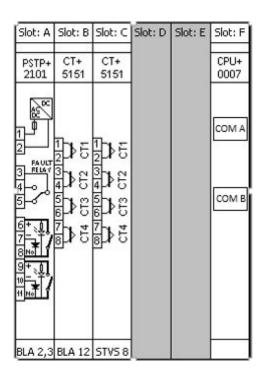
FDE N°: 20GJ0731141

Rev. A

Page 13 / 56

CONFIGURATION DU MATERIEL

Le nombre minimum d'entrées et de sorties est indiqué dans le tableau ci-dessous.


Configuration matériel	S24/T
Boîtier	Boîtier du tableau de bord (taille 24 HP)
Entrées courant (le 4ème canal peut être sensible)	8 (3x 1/5 A et 1x 1/5/0,2A)
Entrées numériques	6*
Sorties numériques	5*
Sorties de déclenchement rapide	2 (4 A)
Contact IRF	1

^{*} comme configuration matérielle standard des cartes d'E/S.

Indices de protection IP:

- Protection IP20 par l'arrière
- Indice de protection IP54 sur la face avant

La disposition des modules de la configuration S24/LD est illustrée ci-dessous.

Options de cartes d'E/S pour S24/T :

Type de carte E/S	Slot D	Slot E
O6R5	Standard	N/A
012	Option	Option
O8	Option	Option
R8	Option	Option

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

ev. A

Page 14 / 56

Options de communication pour S24/T :

Ports de communication	Pas de communication	Protocoles hérités	IEC 61850	Ethernet redondant
COM A	Standard	N/A	N/A	Option
сом в	Standard	Option	Option	N/A

Les modules matériels appliqués

Les modules appliqués sont énumérés dans le tableau ci-dessous.

Les caractéristiques techniques de l'appareil et des modules sont décrites dans le document "Description du matériel".

Identifiant de module	Explication
PSTP+ xx01	Bloc d'alimentation avec contacts de déclenchement
O6R5+ xx01	Module E/S binaire
O12+ xx01	Module d'entrée binaire
O8+ xx01	Module d'entrée binaire
R8+ 00	Module de sortie à relais de signalisation
CT+ 5151	Module d'entrée courant analogique
CPLI+ xxxx	Module de traitement et de communication

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A

Page 15 / 56

Découvrir l'appareil

Les informations de base pour travailler avec les appareils Protecta sont décrites dans le document "Guide de démarrage rapide des appareils de la gamme Protecta".

IED EP+ S24 avec face avant HMI N&B en standard

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A

Page 16 / 56

IED EP+S24 avec face avant HMI couleur en option

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A

Page 17 / 56

CONFIGURATION LOGICIEL

Fonctions de protection et de contrôle

Les blocs fonction sont décrits en détail dans des documents séparés. Elles sont également mentionnées dans ce tableau.

La plage de paramétrage des blocs fonction suivants peut être modifiée si elle ne correspond pas à la demande du client. Dans ce cas, veuillez contacter l'équipe de développement sur le site de support Microener : https://www.microener.com

Nom	Titre	Document
IOC50_low IOC50_high	3ph Instant.OC	Description du bloc fonction de protection instantanée triphasée contre les surintensités de courant triphasé
TOC51_low TOC51_high	3ph Surintensité de courant	Description du bloc fonction de protection triphasée contre les surintensités
IOC50N	Résiduel Instant.OC	Description du bloc fonction de protection contre les surintensités instantanées résiduelles
TOC51N_low TOC51N_high	TOC résiduel	Description du bloc fonction de protection contre les surintensités résiduelles
TOC46	Nég. Séq. OC	Description du bloc fonction de protection contre les surintensités à séquence négative
DIF87_2W (DIF87T)	Différentielle Transfo	Description du bloc fonction différentielle transformateur
INR68	Courant d'enclenchement	Description de la fonction courant d'enclenchement
TTR49L	Surcharge thermique	Description du bloc fonction de protection thermique de la ligne
VCB60	Déséquilibre de courant	Description du bloc fonction de déséquilibre actuel
BRF50MV	Défaillance du disjoncteur	Protection contre les pannes de disjoncteur pour la description de blocs fonctionnels de réseaux non solidement mis à la terre
TRC94_low TRC94_high	Logique de voyage	Description du bloc fonction logique de déclenchement
CT4		Description du bloc fonction d'entrée courant
CB1Pol*		Désignation du bloc fonction de commande du disjoncteur

 $[\]ensuremath{^{*}}$ Le HMI couleur réelle est nécessaire pour utiliser les fonctions de contrôle

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page 18 / 56

Fonction maximum de courant instantané (IOC50)

La fonction « maximum de courant instantané » fonctionne dès le franchissement du seuil correspondant réglé sur l'appareil par l'un des 3 courants circulant sur l'entrée de l'unité ampèremétrique « phases ».

Le seuil de fonctionnement est un paramètre programmable dont la valeur peut être doublée, selon la programmation de l'appareil, en l'associant à une entrée logique de l'appareil définie en ce sens par l'utilisateur.

La détection du franchissement du seuil utilise comme critère de fonctionnement la valeur **crête** du signal mesuré ou sa valeur **efficace vraie** (RMS). La composante fondamentale de la valeur efficace vraie est déterminée à partir d'un algorithme de calcul indépendant du bloc [IOC50].

Le choix du critère de détection a trois valeurs possibles : Inhibé, Valeur crête ou Valeur RMS.

- Le critère de détection basé sur la valeur **RMS** donne une meileure précision sur le seuil de fonctionnement. Toutefois, le temps de mesure nécessaire à l'élaboration de cette valeur RMS est supérieur à une période du signal du réseau.
- Le critère de détection basé sur la valeur **crête**, permet de « travailler » avec des TC saturés et par conséquent la détection d'harmoniques, mais au détriment de la précision du seuil de fonctionnement et au risque de déclenchements intempestifs. Par ailleurs, de par le critère de détection, le temps de mesure de l'unité dans ces conditions est plus rapide (demi-période).

De par sa nature le bloc fonction [IOC50] génère un ordre de fonctionnement instantané si la valeur mesurée sur l'une des trois phases est supérieure au seuil de réglage.

Le bloc fonction [IOC50] génère un ordre de déclenchement général et des déclenchements séparés correspondant à la phase en défaut.

Une entrée logique permettant le blocage de la fonction de protection à maximum d'intensité instantané est disponible. Les conditions d'activation/désactivation/blocage sont définies par l'utilisateur à l'aide de l'éditeur d'équation logique sous EUROCAP.

Caractéristiques techniques

Données technique	Précision	
Critère de détection utilisant la valeur crête		
Caractéristiques de fonctionnement	Instantané	<6%
Ecart de retour	0.85	
Temps de fonctionnement à 2*Is	<15 ms	
Temps de retour *	< 40 ms	
Insensibilité à la composante asymétrique	90 %	
Critère de détection utilisant la valeur RMS		
Caractéristiques de fonctionnement	Instantané	<2%
Ecart de retour	0.85	
Temps de fonctionnement à 2*I _S	<25 ms	
Temps de retour*	< 60 ms	
Insensibilité à la composante asymétrique	15 %	

^{*}Mesure à partir des contacts

Paramètres de réglages

Paramètre	Désignation		Rég	lage		Par défaut
Critère de détection						
IOC50_Oper_EPar_	Opération	Off, Valeur cré	ète, Valeur efficac	e		Valeur crête
Seuil de fonctionnement						
		Unité	Min	Max	Pas	
IOC50 StCurr IPar	Start Current	%	20	3000	1	200

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page 19 / 56

Fonction maximum de courant temporisé (TOC51)

La fonction « maximum de courant temporisé » démarre dès le franchissement du seuil correspondant par l'un des courants circulant sur l'une des entrées de l'unité ampèremétrique « phases ». Elle émet un signal de fonctionnement à échéance de sa temporisation si le seuil a été franchi durant toute la durée de celle-ci.

La caractéristique de fonctionnement de cette temporisation peut être à temps constant ou à temps dépendant selon les standards IEC et IEEE (norme IEC 60255-151, Edition 1.0 d'Août 2009).

Dans le cas d'une caractéristique de fonctionnement à temps constant (ou indépendant) le fonctionnement du bloc [TOC51] suit une temporisation fixe dès le franchissement du seuil Is réglé sur l'appareil par l'un des courants « phases », quelle que soit l'amplitude de la surintensité.

Dans le cas d'une caractéristique de fonctionnement à temps dépendant, les propriétés du bloc [TOC51] entrainent que dès le franchissement du seuil Is réglé sur l'appareil par l'un des courants « phases », il adapte la valeur de sa temporisation à l'amplitude de la surintensité (déclenchement d'autant plus rapide que la surintensité est grande).

Les courbes de fonctionnements à temps dépendant associées à la fonction « protection à maximum de courant temporisé » sont définies par la formule suivante (Norme : IEC 61255-4)

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_S}\right)^{\alpha} - 1} + c \right]$$
 Quand $G > G_S$

οù

t(G)(seconds) temps de fonctionnement théorique pour une valeur de G constante, k, c constantes fonctions du type de courbe sélectionnée (en secondes),

coefficient fonction du type de courbe choisie (sans unité),

G valeur d'intensité mesurée, basée sur la valeur efficace vraie (IL1 Four, IL2 Four, IL3 Four)

valeur de réglage de la courbe (Seuil de fonctionnement de la protection),

TMS coefficient multiplicateur de temps (sans unité).

	Réf. IEC	Courbe	k	С	α
1	Α	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	E	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64.07	0.250	2

La fin de la plage de réglage de la courbe à temps dépendant (GD) est :

$$G_{\rm D} = 20 * G_{\rm S}$$

Au-delà de cette valeur, le temps de fonctionnement théorique est défini par la relation suivante :

$$t(G) = TMS \left[\frac{k}{\left(\frac{G_{_D}}{G_{_S}}\right)^{\alpha} - 1} + c \right] \text{ Quand } G > G_{_D} = 20*G_{_S}$$

www.microener.com

MANUEL D'UTILISATION **DU RELAIS S24/T GAMME SMARTLINE**

FDE N°: 20GJ0731141

Rev.

20 / 56 **Page**

Ceci implique que le temps de fonctionnement, au-delà de 20 fois le seuil, est toujours le même.

Par ailleurs, un retard minimum (IDTM) peut être défini par un paramètre spécifique. Cette temporisation est activée si cette dernière est supérieure au temps t(G) défini par la formule ci-dessus.

Cette particularité permet de s'assurer du temps fonctionnement de la protection à partir d'une certaine valeur de courant de défaut (surintensité).

Temps de retombée :

- Pour les courbes IEC, le retour à l'état de veille de la protection est obtenu après une temporisation définie par : TOC51_Reset_TPar_
- Pour les courbes ANSI, le temps de retombée est défini par la relation suivante :

$$t_r(G) = TMS \boxed{\frac{k_r}{1 - \left(\frac{G}{G_S}\right)^{\alpha}}} \label{eq:transform} \text{Quand } G < G_S$$

 $t_r(G)$ (seconds)

а

G

Gs

temps de retombé théorique pour une valeur G constante,

constante fonction du type de courbe sélectionnée (en secondes), coefficient fonction du type de courbe sélectionnée (sans unité),

valeur d'intensité mesurée, basée sur la décomposition en série de Fourier, Valeur de réglage de la courbe (Courant de démarrage de la protection),

Coefficient multiplicateur de temps (sans unité).

	Ref. IEC	Courbe	k r	а
1	Α	IEC Inv	Retour à l'état de veille après une	temporisation fixe, définie
2	В	IEC VeryInv	TOC51_Reset_TPar_	
3	С	IEC ExtInv	"Reset delay"	
4		IEC LongInv		
5		ANSI Inv	0,46	2
6	D	ANSI ModInv	4,85	2
7	E	ANSI VeryInv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

Les informations logiques disponibles de la fonction « protection à maximum de courant » sont :

- Un signal individuel pour chacune des phases en défaut
- Un signal de démarrage général
- Une commande de déclenchement général

Une entrée logique permettant le blocage de la fonction « protection à maximum d'intensité temporisé » est également disponible. Les conditions d'activation/désactivation/blocage sont définies par l'utilisateur à l'aide de l'éditeur d'équation logique sous EUROCAP.

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

ev. A

Page 21 / 56

Caractéristiques techniques

Donnée technique	Valeur	Précision
Fonctionnement	$20 \le G_S \le 1000$	< 2 %
Temps de fonctionnement		±5% or ±15 ms, le plus grand des deux
Ecart de retour	0,95	
Temps de retour * Caractatériqtique à temps dépendant. Caractéristique à temps independant.	Environ 60 ms	< 2% or ±35 ms, le plus grand des deux
Insensibilité à composante apériodique		< 2 %
Temps de détection	< 40 ms	
Temps de retombée Caractéristique à temps dépendant. Caractéristique à temps independant.	30 ms 50 ms	
Influence de la variation du courant sur le temps de fonctionnement (IEC 60255-151)		< 4 %

^{*} Mesuré au niveau des contacts.

Paramètres de réglage

Paramètre	Désignation		Rég	lage		Par défaut
Caractéristique de fonctionnement						
TOC51_Oper_EPar_	Operation	IEC ExtInv, IEC L	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv			Definite Time
		Unité	Min	Max	Pas	
Seuil de fonctionnement						
TOC51_StCurr_IPar_	Start Current	%	20	1000	1	200
Coefficient multiplicateur de	temps (TMS)					
TOC51_Multip_FPar_	Time Multiplier	sec	0.05	999	0.01	1.0
Temporisation de fonctionne	ement minimal (temps dé	pendant)				
TOC51_MinDel_TPar_	Min Time Delay *	msec	0	60000	1	100
Temporisation de fonctionne	ement (temps constant)					
TOC51_DefDel_TPar_	Definite Time Delay **	msec	0	60000	1	100
Temps de retour à l'état de	veille (temps dépendant)					
TOC51_Reset_TPar_	Reset Time*	msec	0	60000	1	100

^{*}Applicable pour une courbe à temps dépendant

^{**}Applicable pour une courbe à temps constant

www.microener.com

MANUEL D'UTILISATION **DU RELAIS S24/T GAMME SMARTLINE**

FDE N°: 20GJ0731141

Rev.

22 / 56 **Page**

Fonction maximum de courant résiduel (IOC50N)

La fonction « maximum de courant résiduel instantané » fonctionne dès le franchissement du seuil correspondant réglé sur l'appareil par le courant résiduel (3Io) circulant sur l'entrée de l'unité ampèremétrique « homopolaire ».

La détection du franchissement du seuil utilise comme critère de fonctionnement la valeur crête du signal mesuré ou sa valeur efficace vraie (RMS). La composante fondamentale de la valeur efficace vraie est déterminée à partir d'un algorithme de calcul indépendant du bloc [IOC50N].

Le choix du critère de détection a trois valeurs possibles : Inhibé, Valeur crête ou Valeur RMS.

- Le critère de détection basé sur la valeur RMS donne une meilleure précision sur le seuil de fonctionnement. Toutefois, le temps de mesure nécessaire à l'élaboration de cette valeur RMS est supérieur à une période du signal du réseau.
- Le critère de détection basé sur la valeur crête, permet de « travailler » avec des TC saturés et par conséquent la détection d'harmoniques, mais au détriment de la précision du seuil de fonctionnement et au risque de déclenchements intempestifs. Par ailleurs, de par le critère de détection, le temps de mesure de l'unité dans ces conditions est plus rapide (demi-période).

De par sa nature le bloc fonction [IOC50N] génère un ordre de fonctionnement instantané si la valeur mesurée 3Io est supérieure au seuil de réglage.

Une entrée logique permettant le blocage de la fonction de protection à maximum d'intensité instantané est disponible. Les conditions d'activation/désactivation/blocage sont définies par l'utilisateur à l'aide de l'éditeur d'équation logique sous EUROCAP.

Caractéristiques techniques

Données technic	Précision	
Critère de détection utilisant la valeur crête		
Caractéristique de fonctionnement (I>0.1 In)	Instantané	<6%
Ecart de retour	0.85	
Temps de fonctionnement à 2*Is	<15 ms	
Temps de retour *	< 35 ms	
Insensibilité à la composante asymétrique	85 %	
Critère de détection utilisant la valeur RMS		
Caractéristique de fonctionnement (I>0.1 In)	Instantané	<3%
Ecart de retour	0.85	
Temps de fonctionnement à 2*Is	<25 ms	
Temps de retour *	< 60 ms	
Dépassement sur transitoires	15 %	

^{*}Mesuré sur les contacts

Paramètres de réglages

Paramètre	Désignation		Réglage			Par défaut
Critère de détection						
IOC50N_Oper_EPar_	Operation	Off, Valeur crê	te, Valeur efficac	æ		Valeur crête
Seuil de fonctionnement						
		Unité	Min	Max	Pas	
IOC50N_StCurr_IPar_	Start Current	%	10	400	1	200

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page 23 / 56

Fonction maximum de courant résiduel temporisé (TOC51N)

La fonction « maximum de courant résiduel temporisé » démarre dès le franchissement du seuil correspondant par le courant résiduel (3Io) circulant sur l'entrée de l'unité ampèremétrique « homopolaire ». Elle émet un signal de fonctionnement à échéance de sa temporisation si le seuil a été franchi durant toute la durée de celle-ci.

La caractéristique de fonctionnement de cette temporisation peut être à temps constant ou à temps dépendant selon les standards IEC et IEEE (norme IEC 60255-151, Edition 1.0 d'Août 2009).

Dans le cas d'une caractéristique de fonctionnement à temps constant (ou indépendant) le fonctionnement du bloc [TOC51N] suit une temporisation fixe dès le franchissement du seuil Ios réglé sur l'appareil par le courant résiduel, quelle que soit l'amplitude de la surintensité.

Dans le cas d'une caractéristique de fonctionnement à temps dépendant, les propriétés du bloc [TOC51N] entrainent que dès le franchissement du seuil Ios réglé sur l'appareil par le courant résiduel, il adapte la valeur de sa temporisation à l'amplitude de la surintensité (déclenchement d'autant plus rapide que la surintensité est grande).

Les courbes de fonctionnements à temps dépendant associées à la fonction « protection à maximum de courant résiduel temporisé » sont définies par la formule suivante (Norme : IEC 61255-4)

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_S}\right)^{\alpha} - 1} + c \right]$$
 Quand $G > G_S$

οù

t(G)(seconds) temps de fonctionnement théorique pour une valeur de G constante, k, c constantes fonctions du type de courbe sélectionnée (en secondes),

coefficient fonction du type de courbe choisie (sans unité),

G valeur d'intensité mesurée, basée sur la valeur efficace vraie (IL1 Four, IL2 Four, IL3 Four)

valeur de réglage de la courbe (Seuil de fonctionnement de la protection),

TMS coefficient multiplicateur de temps (sans unité).

	Réf. IEC	Courbe	k	c	α
1	Α	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	Е	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

La fin de la plage de réglage de la courbe à temps dépendant (GD) est :

$$G_{\rm D} = 20 * G_{\rm S}$$

Au délà de cette valeur, le temps de fonctionnement théorique est défini par la relation suivante :

$$t(G) = TMS \left[\frac{k}{\left(\frac{G_{\rm D}}{G_{\rm S}}\right)^{\alpha} - 1} + c \right] \text{ Quand } G > G_{\rm D} = 20*G_{\rm S}$$

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page **24 / 56**

Ceci implique que le temps de fonctionnement, au-delà de 20 fois le seuil, est toujours le même.

Par ailleurs, un retard minimum (IDTM) peut être défini par un paramètre spécifique. Cette temporisation est activée si cette dernière est supérieure au temps t(G) défini par la formule ci-dessus.

Cette particularité permet de s'assurer du temps fonctionnement de la protection à partir d'une certaine valeur de courant de défaut (surintensité).

Temps de retombée :

- Pour les courbes IEC, le retour à l'état de veille de la protection est obtenu après une temporisation définie par : TOC51N_Reset_TPar_ (Reset delay)
- Pour les courbes ANSI, le temps de retombée est défini par la relation suivante :

$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_S} \right)^{\alpha}} \right] \text{ Quand } G < G_S$$

où

t_r(G)(seconds)

k_r

a

G Gs temps de retombé théorique pour une valeur G constante,

constante fonction du type de courbe sélectionnée (en secondes), coefficient fonction du type de courbe sélectionnée (sans unité),

valeur d'intensité mesurée, basée sur la décomposition en série de Fourier, Valeur de réglage de la courbe (Courant de démarrage de la protection),

Coefficient multiplicateur de temps (sans unité).

	Ref. IEC	Courbe	k r	α		
1	Α	IEC Inv	Retour à l'état de veille après une temporisation fixe, définie			
2	В	IEC VeryInv	TOC51N_Reset_TPar_			
3	С	IEC ExtInv	"Reset delay"			
4		IEC LongInv				
5		ANSI Inv	0,46	2		
6	D	ANSI ModInv	4,85	2		
7	Е	ANSI VeryInv	21,6	2		
8	F	ANSI ExtInv	29,1	2		
9		ANSI LongInv	4,6	2		
10		ANSI LongVeryInv	13,46	2		
11		ANSI LongExtInv	30	2		

Les informations logiques disponibles de la fonction « protection à maximum de courant » sont :

- Un signal de démarrage général
- Une commande de déclenchement général

Une entrée logique permettant le blocage de la fonction « protection à maximum d'intensité temporisé » est également disponible. Les conditions d'activation/désactivation/blocage sont définies par l'utilisateur à l'aide de l'éditeur d'équation logique sous EUROCAP.

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

ev. A

Page 25 / 56

Caractéristiques techniques

Données techniques	Valeur	Précision
Fonctionnement	$20 \le G_S \le 1000$	< 2 %
Temps de fonctionnement		±5% or ±15 ms, le plus grand des deux
Écart de retour	0,95	
Temps de retour * Caractéristique à temps dépendant. Caractéristique à temps indépendant.	Environ 60 ms	< 2% or ±35 ms, le plus grand des deux
Insensibilité à composante apériodique		< 2 %
Temps de détection	< 40 ms	
Temps de retombée Caractéristique à temps dépendant. Caractéristique à temps indépendant.	30 ms 50 ms	
Influence de la variation du courant sur le temps de fonctionnement (IEC 60255-151)		< 4 %

^{*} Mesuré pour une version In = 200mA

Paramètres de réglages

Paramètre	Désignation		Rég	lages		Par défaut
Caractéristique de foncti	onnement					
TOC51N_Oper_EPar_	Operation	IEC ExtInv, IEC I	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv			Definite Time
		Unité	Min	Max	Pas	
Seuil de fonctionnement						
TOC51N_StCurr_IPar_	Start Current (1)	%	5	200	1	50
TOC51N_StCurr_IPar_	Start Current(2)	%	10	1000	1	50
Coefficient multiplicateu	r de temps (TMS)					
TOC51N_Multip_FPar_	Time Multiplier	sec	0.05	999	0.01	1.0
Temporisation de fonction	nnement minimal (ten	nps dépendant)				
TOC51N_MinDel_TPar_	Min Time Delay *	msec	0	60000	1	100
Temporisation de fonctionnement (temps constant)						
TOC51N_DefDel_TPar_	Definite Time Delay **	msec	0	60000	1	100
Temps de retour à l'état	Temps de retour à l'état de veille (temps dépendant)					
TOC51N_Reset_TPar_	Reset Time*	msec	0	60000	1	100

In = 1A ou 5A

In = 200mA ou 1A

^{*}Applicable pour une courbe à temps dépendant

^{**}Applicable pour une courbe à temps constant

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page 26 / 56

Fonction maximum de composante inverse de courant (TOC46)

La fonction « maximum de composante inverse de courant » fonctionne dès le franchissement du seuil correspondant réglé sur l'appareil par la composante inverse du courant déterminé à partir des courants circulant sur l'unité ampèremétrique « phases ». Elle émet un signal de fonctionnement à échéance de sa temporisation si le seuil a été franchi par la valeur efficace (RMS) de la composante inverse, durant toute la durée de celle-ci.

La caractéristique de fonctionnement de cette temporisation peut être à temps constant ou à temps dépendant selon les standards IEC et IEEE (Norme IEC 60255-151, Edition 1.0 d'Août 2009).

Dans le cas d'une caractéristique de fonctionnement à temps constant (ou indépendant) le fonctionnement du bloc [TOC46] suit une temporisation fixe dès le franchissement du seuil réglé sur l'appareil par la composante inverse du courant, quelle que soit l'amplitude de cette composante.

Les courbes de fonctionnements à temps dépendant associées à la fonction « protection à maximum de courant résiduel temporisé » sont définies par la formule suivante :

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_S}\right)^{\alpha} - 1} + c \right] \text{ avec } G > G_S$$

οù

t(G)(seconds) temps de fonctionnement théorique pour une valeur de G constante, k, c constantes fonctions du type de courbe sélectionnée (en secondes), coefficient fonction du type de courbe sélectionnée (sans unité),

G valeur mesurée, composante fondamentale de la composante inverse du courant(INFour),

valeur de réglage de la courbe,

TMS coefficient multiplicateur de temps (sans dimension).

	IEC ref	Courbes	k r	c	α
1	Α	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	Е	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

La fin de la plage de réglage de la courbe à temps dépendant (G_{D}) est :

$$G_{\rm D} = 20 * G_{\rm S}$$

Au-delà de cette valeur, le temps de fonctionnement théorique est défini. La courbe à temps inverse est aussi combinée à une temporisation minimale, la valeur de celle-ci est paramétrée par l'utilisateur TOC46_MinDel_TPar_ (Min. Time Delay). Ceci implique que le temps de fonctionnement, au-delà de 20 fois le seuil, est toujours le même.

Les informations logiques disponibles de la fonction « protection à maximum de composante inverse de courant » sont :

- Un signal de démarrage (franchissement du seuil)
- Une commande de déclenchement

Une entrée logique permettant le blocage de la fonction « protection à maximum de composante inverse de courant » est également disponible. Les conditions d'activation/désactivation/blocage sont définies par l'utilisateur à l'aide de l'éditeur d'équation logique sous EUROCAP.

Caractéristiques techniques

www.microener.com

MANUEL D'UTILISATION **DU RELAIS S24/T GAMME SMARTLINE**

FDE N°: 20GJ0731141

27 / 56 Page

Donnée technique	Valeur	Précision
Fonctionnement	$10 \le G_s [\%] \le 200$	< 2 %
Temps de fonctionnement		±5% or ±15 ms, le plus grand des deux
Ecart de retour	0,95	
Temps de retour * Caractérisitique à temps dépendant. Caractéristique à temps independant.	Environ 60 ms	<2 % or ±35 ms, le plus grand des deux
Insensibilité à la composante apériodique		< 2 %
Temps de détection à 2*Gs	<40 ms	
Temps de retombée Caractéristique à temps dépendant. Caractéristique à temps independant.	25 ms 45 ms	
Influence de la variation du courant d'entrée sur le temps de fonctionnement (IEC 60255-151)		< 4 %

^{*}Mesuré au niveau du contact

Paramètres de réglage

Paramètre	Désignation		Réglage			Défaut
Caractéristique de fonctionnem	ent					
TOC46_Oper_EPar_	Operation	IEC VeryInv, I ModInv, ANSI	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv			Definit Time
		Unité	Min	Max	Pas	Défaut
Seuil de fonctionnement						
TOC46_StCurr_IPar_	Start Current	%	5	200	1	50
Temporisation minimale de fond	ctionnement (temps dé	pendant)				
TOC46_MinDel_TPar_	Min Time Delay*	msec	0	60000	1	100
Temporisation de fonctionneme	nt (temps constant)					
TOC46_DefDel_TPar_	Definite Time Delay**	msec	0	60000	1	100
Temps de retout à l'état de veill	e (temps dépendant)					
TOC46_Reset_TPar_	Reset Time*	msec	0	60000	1	100
Coefficient multiplicateur de ter	nps (TMS)					
TOC46_Multip_TPar_	Time Multiplier*	msec	100	60000	1	100

^{*}Applicable pour une courbe à temps dépendant **Applicable pour une courbe à temps constant

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page 28 / 56

Fonction protection différentielle transformateur (DIF87_2w)

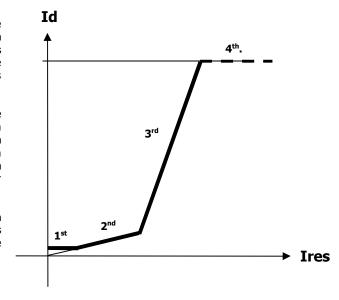
La fonction protection différentielle transformateur est la protection de base des transformateurs de puissance. Le bloc protection DIF87_2w est destiné à la protection différentielle des transformateurs à deux enroulements. Le bloc protection DIF87_3w quant à lui, est destiné à la protection des transformateurs à 3 enroulements.

Un transformateur transforme le courant circulant sur son primaire en un courant en son secondaire selon le rapport du nombre de spires et le couplage du transformateur. Les couplages étoile, triangle, zigzag des trois bobinages du primaire et du secondaire entrainent des déphasages des courants. Le bloc protection différentielle DIF87 applique une matrice de transformation aux courants mesurés d'un côté du transformateur et les combine aux courants mesurés au secondaire.

Pour éliminer la composante homopolaire, la matrice de transformation travaille à partir du couplage triangle. Le couplage du transformateur de puissance est renseigné dans la protection par un paramètre dédié indiqué lors de la programmation de l'appareil.

Lors de la mise sous tension d'un transformateur de puissance, il peut apparaître un courant différentiel virtuel important dû à l'amplitude du courant d'appel dissymétrique. Dans ce cas la présence d'harmonique de rang 2 dans le courant différentiel est utilisé pour inhiber la fonction différentielle évitant ainsi un déclenchement intempestif de la protection lors de l'enclenchement du transformateur.

Un courant différentiel virtuel de forte amplitude peut également apparaître en cas de surinduction (surtension) du transformateur de puissance causée par la saturation de son circuit magnétique. Dans ce cas la présence d'harmonique de rang 5 est utilisée pour éviter le fonctionnement intempestif de la protection différentielle.


L'analyse des harmoniques est réalisée à partir de la décomposition en série de Fourier du courant différentiel sur les trois phases. Les résultats de cette transformée sont ensuite utilisés par l'unité différentielle et par les utiltés de filtrages des harmoniques des rangs 2 et 5.

Les algorithmes comparent les « sorties » des filtres aux consignes entrées dans la protection. Si l'harmonique du rang considéré est relativement important par rapport au signal fondamental, un signal de retenu est généré instantanément et une temporisation est initialisée dans le même temps. Si la durée de l'état actif est au moins de 25ms, alors la remise à zéro du signal de retenu est retardée de 15ms supplémentaires.

Un module de décision logique détermine si le courant différentiel de chacune des phases est au-dessus de la courbe de fonctionnement de la protection différentielle. Il compare l'amplitude des courants différentiels à celui des courants de retenu afin d'évaluer le seuil différentiel de fonctionnement de la protection. Le calcul est basé sur la somme des amplitudes des courants déphasés.

La courbe de fonctionnement du bloc fonction différentiel est constituée de 4 segments. La première représente la sensibilité de base du bloc, la seconde est utilisée pour compenser l'écart du rapport de transformation dû à la présence d'un régleur en charge. Le troisième permet la prise en considération de la saturation éventuelle des TC. Le quatrième conduit à un fonctionnement de la protection quel que soit le courant mesuré par la protection. La pente du troisième segment est constante et vaut 2.

Une entrée logique permettant le blocage de la fonction « protection différentielle » est également disponible. Les conditions d'activation/désactivation/blocage sont définies par l'utilisateur à l'aide de l'éditeur d'équation logique sous EUROCAP.

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

ev. A

Page 29 / 56

Mesure	Unité	Commentaire
Idiff. L1	In %	Courant différentiel calculé sur la phase 1 (Avec couplage & indice horaire)
Idiff. L2	In %	Courant différentiel calculé sur la phase 2 (Avec couplage & indice horaire)
Idiff. L3	In %	Courant différentiel calculé sur la phase 3 (Avec couplage & indice horaire)
Ibias L1	In %	Courant de retenu calculé sur la phase 1 (Avec couplage & indice horaire)
Ibias L2	In %	Courant de retenu calculé sur la phase 2 (Avec couplage & indice horaire)
Ibias L3	In %	Courant de retenu calculé sur la phase 3 (Avec couplage & indice horaire)

Remarque: L'évaluation de la valeur du fondamental des courants présents sur les entrées ampèremétriques (sans compensation du couplage) aide à la mise en service de la fonction: « protection différentielle ». Toutefois ces estimations seront effectuées par un module software indépendant non décrit dans ce chapitre.

Caractéristiques techniques

Données techniques	Précision	
Caractéristique de fonctionnement	4 pentes	
Ecart de retour	0,95	
Précision de fonctionnement		<2%
Temps de fonctionnement sur la 4e pente	Environ 20 ms	
Temps de retour sur la 4e pente	Environ 25 ms	
Temps de fonctionnement sur les pentes 1, 2, 3	Environ 30 ms	
Temps de retour sur les pentes 1, 2, 3	Environ 25 ms	

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

ev. A

Page 30 / 56

Paramètres de réglage

Paramètre	Désignatio n		Réglage					
Mise en service de la	fonction différer	ntielle						
DIF87_Op_EPar_	Operation	Off, On				On		
Couplage et indice h	oraire primaire-se	econdaire						
DIF87_VGrSec_EPar	Par_ Pri-Sec					Dd0		
Couplage et indice horaire primaire-tertiaire								
DIF87_VGrTer_EPar	_ Pri-Ter VGroup*	Dy1,Dy5,Dy7,Dy11,D Yz5,Yz7,Yz11	d0,Dd6,Dz0,Dz2,Dz4,D	z6,Dz8,Dz10,Yy0,Yy6,Yd1	l,Yd5,Yd7,Yd11,Yz1,	Dd0		
DIF87_0Seq_BPar_	Eliminatio	on de la composante hom	nopolaire			True		
		Unité	Min	Max	Pas			
Compensation des c	ourants (primaire	, secondaire, teritiaire)						
DIF87_TRPr_IPar_	TR Primary Comp	%	20	500	1	100		
DIF87_TRSec_IPar -	TR Secondary Comp	%	20	500	1	100		
DIF87_TRTer_IPar _	TR Tertiary Comp	%	20	200	1	100		
Retenue d'harmoniq	ue 2							
DIF87_2HRat_IPar	2nd Harm Ratio	%	5	50	1	15		
Retenue d'harmoniq	ue 5							
DIF87_5HRat_IPar _	5th Harm Ratio	%	5	50	1	25		
Caractériquique de la	courbe de foncti	onnement						
Seuil différentiel de l	base							
DIF87_f1_IPar_	Base Sensitivity	%	10	50	1	20		
2 nd pente								
DIF87_f2_IPar_	1st Slope	%	10	50	1	20		
Limite de la 2 nd pent	e							
DIF87_f3_IPar_	1st Slope Bias Limit	%	% 200 2000 1					
Seuil de fonctionnen	nent de la 4e pen	te						
DIF87_HCurr_IPar	UnRst Diff Current	%	800	2500	1	800		

^{*}Si les couplages du primaire indiqué au paramètre primaire-secondaire et primaire-tertiaire sont incohérents alors la fonction protection est automatiquement désactivée et une alarme est émise.

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page **31 / 56**

Fonction image thermique (TTR49L)

La protection image thermique travaille à partir des courants présents sur les entrées de l'unité « phases ». Les valeurs RMS sont calculées et la température est estimée à partir de la plus forte des trois intensités.

Le calcul de la température est basé sur la résolution d'une équation différentielle thermique. Cette méthode permet d'estimer l'« élévation de température » au-dessus de la température ambiante. Par conséquent, la température évaluée est la somme de la température calculée "élévation de température" et de la température ambiante.

Si la température calculée (somme de "élévation de température" et de la température ambiante) est supérieure aux seuils, des signaux d'alarme, de déclenchement et de blocage de nouvel enclenchement sont générés.

Pour un réglage optimal, les valeurs suivantes doivent être mesurées et définies comme paramètres :

- le courant de charge, qui est le courant permanent appliqué pour la mesure,
- la température nominale, qui est la température en régime stable au courant nominal de la charge,
- la température de base, qui est la température ambiante au moment de la mesure
- la constante de temps, qui correspond aux constantes de temps d'échauffement/refroidissement.

A la mise sous tension du relais de protection, le programme permet la définition d'une température de démarrage en tant que température initiale de la valeur calculée. Le paramètre Startup Term est la température initiale supérieure à la température de l'environnement par rapport à la température nominale supérieure à la température de l'environnement.

La température ambiante peut être mesurée à l'aide d'une sonde générant un signal électrique proportionnel à la température. En l'absence de système de mesure de température, la température de l'environnement peut être définie par le paramètre dédié TTR49L_Amb_IPar_ (Température Ambiante). La sélection entre une valeur paramétrée et une valeur mesurée directement est réalisé en paramétrant l'équation logique Booléenne.

L'inconvénient des éléments métalliques (ligne protégée) exposés aux rayons du soleil est qu'ils sont situés en hauteur, par rapport à la température ambiante, ceci sans courant d'échauffement, de plus, ils sont principalement refroidis par le vent et le coefficient de transfert de chaleur est fortement dépendant des effets du vent. Comme les lignes aériennes sont implantées dans des endroits géographiques différents sur des dizaines de kilomètres, les effets des rayons du soleil et du vent ne peuvent être pris en considération de manière sûre. La meilleure approximation est de mesurer la température d'un élément de la ligne sans transit de courant mais exposée de manière identique aux conditions environnementales de la ligne protégée.

L'utilisation d'une protection par image thermique de ligne est une solution appropriée par rapport à une protection de surcharge classique car la protection thermique mémorise l'état de charge précédent de la ligne et les réglages de la protection thermique ne nécessitent pas une grande marge de sécurité entre l'intensité autorisée et le courant thermique autorisé de la ligne. Dans le cas de larges zones de charge et de larges zones de température, cela permet une meilleure surveillance de la température et par conséquence une meilleure capacité de transport de la ligne.

L'équation différentielle de température est la suivante :

$$\frac{d\Theta}{dt} = \frac{1}{T} (\frac{I^2(t)R}{hA} - \Theta) \text{ , avec pour constante de temps à l'échauffement : } T = \frac{cm}{hA}$$

Dans l'équation différentielle

I(t) (RMS) courant d'échauffement, valeur efficace changeant à plusieurs reprises ;

R résistance de la ligne ;

c capacité thermique du conducteur;

m masse du conducteur;

élévation de température au-dessus de la température ambiante ;
 coefficient de transfert de chaleur à la surface du conducteur ;

A surface du conducteur ;

t temps.

La solution de l'équation différentielle thermique pour un courant constant est une température fonction du temps (la dérivée mathématique de cette équation est définie dans un document spécifique).

$$\Theta(t) = \frac{I^2 R}{hA} \left(1 - e^{-\frac{t}{T}} \right) + \Theta_o e^{-\frac{t}{T}}$$

οù

est la température de départ.

Rappelons le calcul de la température mesurée :

Temperature(t) = $\Theta(t)$ +Temp_ambient

οiì

Temp_ambient est la température ambiante.

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A

Page 32 / 56

Dans un document séparé, il est signifié que des paramètres mesurables plus facilement peuvent être utilisés en lieu et place de ceux mentionnés ci-dessus. Ainsi, la solution générale de cette équation est :

$$H(t) = \frac{\Theta(t)}{\Theta_n} = \frac{I^2}{I_n^2} \left(1 - e^{-\frac{t}{T}} \right) + \frac{\Theta_o}{\Theta_n} e^{-\frac{t}{T}}$$

Où:

H(t) est le "niveau thermique" de l'objet protégé, il s'agit d'un rapport de la température de référence Θ_n. (C'est une valeur sans dimension mais elle peut être exprimée sous forme de pourcentage.)

 Θ_n

est la température de référence supérieure à la température de l'environnement, qui peut être mesurée en régime établi et dans

le cas d'un courant constant de référence In.

 \mathbf{I}_{n}

est le courant de référence (peut être considéré comme le courant nominal de l'élément). Si la circulation du courant est permanente, alors la température de référence peut être mesurée en régime établi.

 Θ_o

est un paramètre de la température de départ ramené à la température de référence

Le module "RMS calculations modul" calcule les valeurs efficaces des courants triphasés individuellement. La fréquence d'échantillonnage du calcul est de 1kHz, toutefois, théoriquement, les composantes de fréquence en dessous de 500 Hz sont prises en considération dans les valeurs RMS. Ce module ne fait pas partie de la fonction image thermique, il appartient à la phase préliminaire.

Le module "Max selection module" sélectionne la valeur maximale des courants triphasés.

Le module "Thermal replica" résout l'équation différentielle de 1^{er} ordre en utilisant une simple méthode pas à pas et compare la température calculée aux valeurs programmées. La sonde de température, valeur proportionnelle à la température ambiante peut être raccordée à une entrée (ce signal est optionnel, et défini par les paramètres de réglages).

La fonction peut être désactivée par un paramètre, ou générer une impulsion de déclenchement si la température calculée dépasse un seuil, ou génère un signal de déclenchement si la valeur calculée dépasse le seuil donné par un paramètre mais l'acquittement n'est alors possible que si la température redescend en dessous d'une valeur "Unlock temperature".

La fonction de protection par image thermique ligne possède deux entrées logiques. Leurs conditions est définie par l'utilisateur à partir de l'éditeur d'équation logique. Une de ces entrées peut bloquer la fonction image thermique de la protection, l'autre peut réinitialiser la température cumulée et programmer la valeur de la température définie pour les procédures de tests d'échauffement suivants.

Caractéristiques techniques

Donnée technique	Précision
Temps de fonctionnement a I>1.2*Itrip	<3 % or < <u>+</u> 20 ms

www.microener.com

MANUEL D'UTILISATION **DU RELAIS S24/T GAMME SMARTLINE**

FDE N°: 20GJ0731141

Page 33 / 56

Paramètres de réglages

Paramètre	Désignation		Réglage			Défaut
Mode de fonctionnement						
TTR49L_Oper_EPar_	Operation	Off, Pulsed, Lo	cked			Pulsed
Seuil d'alarme						
		Unité	Min	Max	Pas	
TTR49L_Alm_IPar_	Alarm Temperature	deg	60	200	1	80
Seuil de fonctionnement						
TTR49L_Trip_IPar_	Trip Temperature	deg	60	200	1	100
Température nominale						
TTR49L_Max_IPar_	Rated Temperature	deg	60	200	1	100
Température de base						
TTR49L_Ref_IPar_	Base Temperature	deg	0	40	1	25
Température d'acquittement						
TTR49L_Unl_IPar_	Unlock Temperature	deg	20	200	1	60
Température ambiante						
TTR49L_Amb_IPar_	Ambient Temperature	deg	0	40	1	25
Température initiale						
TTR49L_Str_IPar	Startup Term	%	0	60	1	0
Courant nominal de charge						
TTR49L_Inom_IPar_	Rated Load Current	%	20	150	1	100
Constante de temps						
TTR49L_pT_IPar_	Time Constant	min	1	999	1	10
Présence d'une sonde de temp	pérature					
TTR49L_Sens_BPar_	Temperature Sensor	No, Yes				No

Les définitions des paramètres énumérés ci-dessus sont :

Off la fonction est désactivée ; aucun signal de sortie n'est généré ;

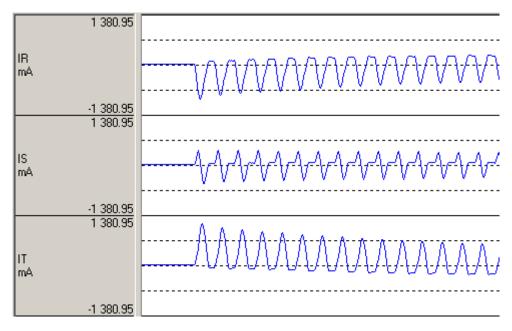
Pulsed

la fonction génère une impulsion de déclenchement si la température calculée dépasse le seuil de déclenchement la fonction génère un signal de déclenchement si la température calculée dépasse le seuil de déclenchement. Ce signal est Locked

acquitté si la température redescend en dessous de la valeur "Unlock temperature".

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE


FDE N°: 20GJ0731141

Rev. A Page 34 / 56

Fonction détection des courants d'enclenchements (INR68)

Lorsqu'une charge inductive possédant un circuit magnétique (transformateur, réactance, etc.) est mise sous tension, un appel de courant peut être créée. Ceci est dû à la saturation asymétrique transitoire du circuit magnétique, assimilé à une charge non-linéaire dans le réseau électrique. Le circuit magnétique est généralement dimensionné pour garantir une valeur du flux magnétique en dessous de son point de saturation, ainsi les pointes d'enclenchement diminuent lentement.

Celles-ci dépendent également d'autres facteurs aléatoires comme l'instant (angle de phase) de mise sous tension de la charge inductive. Dépendant de la courbe de magnétisation du circuit magnétique, les courants d'appel pointes peuvent atteindre des amplitudes bien supérieures au la valeur crête du courant nominal. La figure ci-dessous présente la forme caractéristique du courant d'enclenchement (d'appel) d'un transformateur triphasé.

En conséquence, les relais à maximum de courant, différentiels ou de distance peuvent démarrer et de par la durée du phénomène générer des ordres de déclenchement intempestifs.

La fonction de détection des courants d'enclenchements permet de faire la distinction entre les surintensités créées par les surcharges ou courtscircuits, et les forts courants lors des enclenchements de charges inductives.

Le principe de fonctionnement de la fonction « détection des courants d'enclenchement » repose sur l'analyse de forme spécifique des courants d'enclenchements. La forme caractéristique d'un courant d'enclenchement est d'avoir une valeur moyenne non nulle sur une ou deux phases comme on peut le constater sur le graphique ci-dessus. Aussi la décomposition en série de Fourrier de ces signaux fait ressortir la présence d'harmoniques de rang paire (Rang 2, Rang 4, etc.) caractéristique du courant d'enclenchement d'une charge inductive. La composante de rang 2 étant la plus prédominante à la différence des courants de surcharge ou de court-circuit dans lesquels elle est beaucoup moins présente.

La fonction « détection des courants d'enclenchement » effectue la décomposition en série de Fourier du signal présent sur les entrées ampèremétriques de l'unité « phases ». Un filtre numérique isole l'harmonique de rang 2 sur chacune des 3 phases et le signal fondamental et si le rapport entre l'harmonique de rang 2 et la composante fondamentale est supérieure à la valeur réglée 2nd Harm Ratio réglée sur l'appareil, un signal de détection de courant d'appel est émis.

Ce signal de sortie est actif seulement si la « composante harmonique de base » est au-dessus d'une valeur définie par le paramètre *IPh Base Sens* (seuil de mise en route). Ceci afin d'éviter un fonctionnement intempestif dans le cas de mesure de courants de faibles niveaux mais pouvant engendrer des erreurs de mesure importantes.

Cette fonction travaille à partir du courant de chacune des trois phases traitées de manière indépendante l'une de l'autre. Un signal « détection général de courant d'appel » (gereral inrush detection) est émis si un courant d'enclenchement est détecté sur l'une des trois phases.

La fonction peut être désactivée par une entrée logique associée. Ce signal est le résultat d'une équation logique créé par l'utilisateur avec EUROCAP.

L'utilisation du signal logique de « détection d'enclenchement » peut être utilisé pour bloquer d'autres fonctions du relais de protections et ainsi éviter un déclenchement intempestif.

Certaines fonctions protections utilisent ce signal automatiquement, mais la mise à disposition de la fonction « détection des courants d'enclenchement » à travers un bloc fonctionnel est intéressante d'autres utilisations laissées à l'initiative de l'exploitant.

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

ev. A

Page 35 / 56

Caractéristiques techniques

Donnée technique	Plage de réglage	Précision
Fonctionnement	20 2000% of In	±1% of In

Paramètres de réglage

Paramètre	Désignation	n Réglage			Par Défaut	
Activiation de la fonction						
INR2_Op_EPar_	Operation	Off,On				On
		Unité	Min	Max	Pas	
Pourcentage de l'harmonique de	rang 2 / composant	e fondamenta	le			
INR2_2HRat_IPar_,	2nd Harm Ratio	%	5	50	1	15
Seuil de mise en route						
INR2_MinCurr_IPar_	IPh Base Sens	%	20	100	1	30

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

ev. A

Page 36 / 56

Fonction déséquilibre de courant (VCB60)

La fonction déséquilibre de courant détecte une asymétrie des courants phases. La méthode utilisée consiste faire la différence entre la valeur maximale et la valeur minimale des courants circulant sur l'unité ampèremétrique « phases » (valeurs efficaces de la composante fondamentale). Si la différence entre ces deux valeurs est supérieure à une limite fixée, la fonction émet un signal de démarrage. Néanmoins ce signal n'est généré que si le maximum des intensités est compris entre 10% et 150% du courant nominal.

L'estimation de la valeur efficace à partir de la transformée de Fourier est faite pour chacune des phases. Si la différence entre les valeurs maximale et minimale est telle que définie ci-dessus alors le paramètre (Start Current Diff) passe à l'état « 1 ». Le module de logique combinatoire combine l'état des signaux et vérifie la cohérence de l'ensemble des informations et émet un signal de déclenchement. Celui-ci est « transformé » en ordre de déclenchement après une temporisation dans la mesure ou la logique combinatoire du bloc fonction l'autorise.

La fonction peut être désactivée par lors de la programmation de l'appareil ou inhibée à partir d'une entrée logique définie par utilisateur à l'aide de l'éditeur d'équation logique EUROCAP.

Caractéristiques techniques

Donnée technique	Valeur	Précision
Seuil de fonctionnement à In		< 2 %
Ecart de retour	0.95	
Temps de fonctionnement	70 ms	

Paramètres de réglages

Paramètre	Désignation	Réglage				Défaut
Activation de la fonction						
VCB60_Oper_EPar_	Operation	Off, On				On
Sélection pour l'ordre de déclenchement						
VCB60_StOnly_BPar_	Start Signal Only	0 pour générer un ordre de déclenchement				0
		Unité	Min	Max	Pas	
Différence de courant (phases)						
VCB60_StCurr_IPar_	Start Current Diff	%	10	90	1	50
Temporisation de fonctionnement						
VCB60_Del_TPar_	Time Delay	msec	100	60000	100	1000

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page 37 / 56

Fonction défaillance disjoncteur (BRF50)

Après l'émission d'un ordre de déclenchement par une fonction de protection, il est attendu que le disjoncteur s'ouvre et que le courant de défaut chute en dessous d'un niveau prédéfini. Si ce n'est pas le cas, alors un ordre de déclenchement complémentaire doit être généré aux disjoncteurs de secours pour éliminer le défaut.

La fonction défaillance disjoncteur peut assurer cette tâche.

Le signal d'activation de la protection défaillance disjoncteur est habituellement l'ordre de déclenchement d'une quelconque fonction de protection relative au disjoncteur concerné. L'utilisateur peut à partir de l'éditeur d'équation logique EUROCAP définir le signal de démarrage, ou si un fonctionnement individuel pour chacune des phases est nécessaire, le signal de démarrage est alors « monophasé ».

Deux temporisations dédiées sont lancées simultanément à l'apparition du signal de démarrage de la fonction défaillance disjoncteur. La première est associée à l'émission d'un ordre de déclenchement de secours, la seconde à la réémission de l'ordre initial de déclenchement (ordre pouvant être émis individuellement en cas de déclenchement séparé des phases). Durant l'écoulement de ces deux temporisations, la fonction selon la programmation de l'appareil, surveille les courants, l'état fermé du disjoncteur ou les deux.

Si la fonction défaillance disjoncteur surveille :

- Les courants, alors les valeurs des limites de courant doivent être programmées. Les entrées logiques indiquant l'état des pôles du disjoncteur ne sont, dans ce cas, pas prises en considération.
- La position du disjoncteur, alors les entrées logiques indiquant la position des pôles du disjoncteur doivent être programmées selon le besoin à l'aide de l'éditeur d'équation logique. Les limites de courant ne sont pas utilisées.

Si le critère est à la fois le courant et la position du disjoncteur, les limites de courant et les informations relatives à la position du disjoncteur doivent être renseigné dans l'appareil. Le retour à l'état de veille de la fonction défaillance disjoncteur n'aura lieu alors que lorsque tous les éléments relatifs à sa mise en route auront disparu ou auront été remis à zéro.

Si à la fin de la temporisation de secours, les courants ne sont pas redescendus sous le seuil programmé (de la fonction 50BF) et/ou que le disjoncteur est toujours en position fermé, alors un ordre de déclenchement de secours est généré.

Si l'utilisateur souhaite qu'un ordre nouvel ordre de déclenchement doit être à nouveau émis au disjoncteur initialement défaillant, alors le paramètre d'activation « Retrip » doit être défini sur "On". Dans ce cas, à la fin de la temporisation associée un nouvel ordre d'ouverture sera émis (éventuellement sur la phase concernée).

La fonction de protection défaillance disjoncteur peut être inhibée lors de sa programmation ou à partir d'une 'entrée logique. Les conditions étant programmées par l'utilisateur avec l'éditeur d'équation logique dans le logiciel EUROCAP.

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A

Page 38 / 56

Fonction logique de déclenchement (TRC94)

Cette logique de déclenchement fonctionne selon les fonctionnalités requises par la norme IEC 61850 pour le "Trip logic logical node". Cette logique de déclenchement est applicable uniquement aux déclenchements triphasés, la sélection de la phase n'étant pas applicable.

La logique de déclenchement reçoit les ordres de déclenchement des différents blocs fonctionnels de l'appareil et les associe aux signaux présents sur les entrées logiques qui en fonction du paramétrage aboutiront les sorties du relais protection.

Les conditions de déclenchement sont programmées par l'utilisateur à l'aide de l'éditeur d'équation logique présent dans EUROCAP. L'intérêt de cette logique de déclenchement est de définir une durée minimale d'impulsion même si les fonctions de protection détectent un défaut de courte durée

Caractéristiques techniques

Donnée technique	Valeur	Précision
Durée émission ordre de blocage	Setting value	<3 ms

Paramètres de réglages

Paramètre	Désignation		Rég	glage		Défaut
Mode de fonctionnement						
TRC94_Oper_EPar_	Operation	Off, On				On
		Unité	Min	Max	Pas	
Durée mininale de l'impulsion						
TRC94_TrPu_TPar_	Min Pulse Duration	msec	50	60000	1	150

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page 39 / 56

Fonction contrôle et commande du disjoncteur (CB1Pol)

Le bloc fonctionnel « contrôle et commande du disjoncteur » est destiné à gérer et à contrôler le disjoncteur associé à la protection et à la mise en place d'écrans dynamiques sur l'afficheur graphique de l'appareil.

Le bloc fonctionnel « contrôle et commande du disjoncteur » reçoit soit les commandes à distance depuis le système de supervision (SCADA) soit les commandes locales depuis l'interface graphique (LCD) du relais. Il vérifie les éventuelles interdictions/inter verrouillages et transmet selon ceux-ci la commande au disjoncteur. En retour, il analyse les états des signaux issus du disjoncteur et mettra à jour l'afficheur LCD local et transmettra les informations de position au SCADA.

Fonctions principales du bloc fonctionnel :

- Activation désactivation du mode de fonctionnement Local (Affichage LCD) et à distance (SCADA).
- Intégration des signalisations des commandes du bloc fonctionnel « synchrocheck » au fonctionnement du bloc [CB1Pol].
- Définition des inter verrouillages avec les entrées "EnaOff" (autorisation de déclenchement) et "EnaOn" (autorisation d'enclenchement) accessibles dans l'éditeur d'équation graphique dans EUROCAP.
- Paramétrage des conditions d'inhibition temporaire du fonctionnement du bloc [CB1Pol] à l'aide de l'éditeur d'équation graphique.
- Compatibilité avec la norme IEC 61-850 pour les modèles de contrôle du disjoncteur.
- Réalisation de toutes les taches temporisées :
 - o Temps maximum pour l'exécution d'une commande
 - Durée de l'impulsion
 - Filtrage des états intermédiaires du disjoncteur
 - Vérification du synchrocheck
 - Contrôle des étapes individuelles d'une commande manuelle
- Émission d'un ordre de fermeture ou d'ouverture au disjoncteur (Pour être associées aux commandes d'ouverture des blocs fonctionnels de protection et à l'ordre de fermeture du réenclencheur, celles-ci donnent directement les ordres au disjoncteur). La combinaison est réalisée de manière graphique à l'aide de l'éditeur d'équation.
- Compteur de manœuvres
- Journal des évènements

Le bloc fonctionnel « contrôle et commande du disjoncteur » est pourvu d'entrées logiques. Les conditions de fonctionnement sont définies par l'utilisateur à l'aide de l'éditeur d'équation graphique. Les signaux de contrôle du disjoncteur sont accessibles dans la liste d'états des entrées logiques.

Caractéristiques techniques

Donnée technique	Précision
Incertitude sur le temps de fonctionnement	±5% ou ±15 ms, le plus grand des deux

Paramètres de réglages

Paramètre	Désignation	Réglage	Défaut
Mode de contrôle du disjoncteur	(en accord avec l'IEC	61850)	
CB1Pol_ctlMod_EPar_	ControlModel*	Direct normal, Direct enhanced, SBO enhanced	Direct normal
		Commentaire	
CB1Pol_DisOverR_BPar_	Forced check	Si vrai, alors la fonction "check" (contrôle) ne peut être "check" définie dans l'IEC 61-850	négligée par l'attribut

*Mode de contrôle

• Direct normal : Émission d'une simple commande simple

Direct enhanced : Émission d'une commande avec contrôle de l'état et contrôle de la commande
 SBO enhanced : Sélection avant émission avec contrôle de l'état et contrôle de la commande

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

ev. A

Page 40 / 56

Paramètres de réglages (suite)

Paramètre	Désignation	Unité	Min	Max	Pas	Défaut
Temps avant signalisation de l'échec	de fonctionnement					
CB1Pol_TimOut_TPar_	Max.Operating time	msec	10	1000	1	200
Durée des impulsions "On" ou "Off"						
CB1Pol_Pulse_TPar_,	Pulse length	msec	50	500	1	100
Temps d'attente avant report de la p	osition intermédiaire					
CB1Pol_MidPos_TPar_	Max.Intermediate time	msec	20	30000	1	100
Temps d'attente de l'état stable de initialisée (voir la description du bloc			emporisati	on la procéo	dure de sy	nchroswitch
CB1Pol_SynTimOut_TPar_	Max.SynChk time	msec	10	5000	1	1000
Temps d'attente de l'impulsion de synchroswitch (voir la description du bloc fonctionnel dans document séparé). Aprés ce temps, la fonction est initialisée, aucun basculement possible.						
CB1Pol_SynSWTimOut_TPar_	Max.SynSW time*	msec	0	60000	1	0
Temps d'attente entre la sélection d n'est envoyée.	'un objet et le passage d'ui	ne commande	. A échéan	ce du Timeo	out, aucun	e commande
CB1Pol_SBOTimeout_TPar_	SBO Timeout	msec	1000	20000	1	5000

^{*} Si le paramètre est défini à 0 alors la sortie "StartSW" est désactivée

Variables d'états internes et « canal » de commande

Pour générer un schéma actif sur l'affichage LCD, il existe des variables d'états internes indiquant l'état du disjoncteur. Différents symboles graphiques peuvent être attribués à ces valeurs (voir chapitre 3.2 du document « EuroCAP configuration tool »).

Variable d'état	Désignation	Commentaire
CB1Pol_stVal_Ist_	Etat	0: Intermédiaire 1: Off 2: On 3: Inconnu
Variable de commande		
CB1Pol_Oper_Con_	Fonctionnement	On/Off

En utilisant ce « canal », les boutons poussoirs en façade du relais de protection peuvent être associés à la fermeture ou l'ouverture du disjoncteur.

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Page 41 / 56

Fonctions de mesure

Les valeurs mesurées peuvent être vérifiées sur l'écran tactile de l'appareil dans la page "Fonctions en ligne" ou via un navigateur Internet d'un ordinateur connecté. Les valeurs affichées sont les tensions et courants secondaires, à l'exception du bloc "Mesure de ligne". Ce bloc spécifique affiche les valeurs mesurées en unités primaires, en utilisant les réglages des valeurs primaires VT et CT.

Valeur analogique	Explication
CT4 module 1	
Current Ch - I1	Valeur efficace de la composante harmonique fondamentale de Fourier dans la phase L1
Angle Ch - I1	Angle de phase de la composante harmonique fondamentale de Fourier dans la phase L1*.
Current Ch - I2	Valeur efficace de la composante harmonique fondamentale de Fourier en phase L2
Angle Ch - I2	Angle de phase de la composante harmonique fondamentale de Fourier dans la phase L2*.
Current Ch - I3	Valeur efficace de la composante harmonique fondamentale de Fourier en phase L3
Angle Ch - I3	Angle de phase de la composante harmonique fondamentale de Fourier dans la phase L3*.
Current Ch - I4	Valeur efficace de la composante de courant harmonique fondamentale de Fourier dans le canal I4
Angle Ch - I4	Angle de phase de la composante harmonique fondamentale de Fourier dans le canal 14*.
CT4 module 2	
Current Ch - I1	Valeur efficace de la composante harmonique fondamentale de Fourier dans la phase L1
Angle Ch - I1	Angle de phase de la composante harmonique fondamentale de Fourier dans la phase L1*.
Current Ch - I2	Valeur efficace de la composante harmonique fondamentale de Fourier en phase L2
Angle Ch - I2	Angle de phase de la composante harmonique fondamentale de Fourier dans la phase L2*.
Current Ch - I3	Valeur efficace de la composante harmonique fondamentale de Fourier en phase L3
Angle Ch - I3	Angle de phase de la composante harmonique fondamentale de Fourier dans la phase L3*.
Current Ch - I4	Valeur efficace de la composante de courant harmonique fondamentale de Fourier dans le canal I4
Angle Ch - I4	Angle de phase de la composante harmonique fondamentale de Fourier dans le canal I4*.

^{*}L'angle de référence est l'angle de phase de "Current Ch - I1".

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page 42 / 56

1490 14 7 00

Unité ampèremétrique (CT4)

Lorsque la configuration usine prévoit la présence d'une unité ampèremétrique triphasée/terre, les blocs fonctionnels utilisant la mesure d'un courant sont automatiquement associés aux voies intensités et assignés aux unités ampèremétriques correspondantes.

Une carte unités ampèremétriques est équipée de quatre transformateurs de courant d'adaptation. Généralement, les trois premières entrées constituent l'unité ampèremétrique « phases » qui reçoit l'image les courants circulant sur chacune des phase (IL1, IL2, IL3). La quatrième, quant à elle, constitue l'unité « terre » (homopolaire) elle reçoit l'image du courant résiduel circulant dans le point de mise à la terre du neutre du réseau (à travers un tore homopolaire ou un montage « sommateur » des trois TC phases).

Le rôle du bloc fonctionnel « entrées intensités » est de :

- Régler les paramètres associés aux entrées courants,
- Fournir des valeurs d'échantillons pour la perturbographie,
- Réaliser les calculs de base
 - o Décomposition en série de Fourier (module et angle),
 - Valeur efficace vraie RMS;
- Fournir les valeurs d'intensité pré-calculées aux modules suivants du programme,
- Donner les valeurs de base calculées pour affichage en façade,

Le bloc fonctionnel « entrées intensités » reçoit les échantillons des signaux analogiques discrétisés par le programme d'échantillonnage. L'adaptation de ces signaux dépend des caractéristiques de l'appareil (calibre nominal « phase » CT4_Ch13Nom_EPar_ et calibre nominal « terre » CT4_Ch4Nom_EPar_). Les options à choisir sont 1A ou 5A (sur demande 0.2A ou 1A). Ce paramétrage a une incidence sur le format des échantillons et leur précision (Un faible courant est traité avec une résolution plus fine si 1A est choisi).

Par ailleurs, la phase des courants présents sur l'unité phases peut être inversée à l'aide du le paramètre CT4_Ch13Dir_EPar_ (Bornes homologues I1-3). La phase de l'entrée « terre » peut également être inversée à l'aide ud paramètre CT4_Ch4Dir_Epar.

La connaissance de la valeur efficace vraie (RMS) de ces 4 courants résulte de l'application des règles du traitement du signal et de la transformée de Fourier appliquées à chaque échantillon. Les modules et arguments (angle) ainsi obtenus sont ensuite utilisés par les blocs fonctionnels de protection et sont utilisés par d'autres calculs, la perturbographie et l'affichage en temps réel des courants en face avant du relais.

Le bloc fonctionnel « entrées intensités » permet également d'indiquer au relais les valeurs des courants nominaux des réducteurs de mesure montés côté « puissance ».

Caractéristiques techniques

Donnée technique	Valeur	Précision
Précision du courant	20 – 2000% of In	±1% of In

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

ev. A

Page 43 / 56

Paramètres de réglages

Paramètre	Désignation		Réglage		Défaut
Calibre nominal de l'unité ampère	emétrique « phases ».				
CT4_Ch13Nom_EPar_	Rated Secondary I1-3	1A, 5A			1A
Calibre nominal de l'unité ampère	métrique « homopolaire	».			
CT4_Ch4Nom_EPar_	Rated Secondary I4	1A, 5A (0.2A or 1A)			1A
Sens de câblage des TC de l'unité	« phases » (S2 coté ligne	e/jdB)			
CT4_Ch13Dir_EPar_	Starpoint I1-3	Line, Bus			Line
Sens de détection « aval » de l'ur	ité homopolaire				
CT4_Ch4Dir_EPar_	Direction I4	Normal, Inverted			Normal
		Unité	Min	Max	
Courant primaire nominal voie 1					
CT4_PriI1_FPar_	Rated Primary I1	Α	100	4000	1000
Courant primaire nominal voie 2					
CT4_PriI2_FPar	Rated Primary I2	Α	100	4000	1000
Courant primaire nominal voie 3					
CT4_PriI3_FPar_	Rated Primary I3	Α	100	4000	1000
Courant primaire nominal voie 4					
CT4_PriI4_FPar_	Rated Primary I4	Α	100	4000	1000
CT4 PriI4 FPar	Rated Primary I4	Α	100	4000	1000

NOTE: Le courant nominal primaire n'est pas nécessaire pour le bloc fonctionnel intensité lui-même.

Mesures

Valeur mesurée	Unité	Commentaire
Current Ch - I1	A (secondaire)	Valeur efficace du courant sur la voie 1
Angle Ch - I1	Degré	Phase du courant de l'entrée IL1
Current Ch – I2	A (secondaire)	Valeur efficace du courant sur la voie 2
Angle Ch – I2	Degré	Phase du courant de l'entrée IL2
Current Ch – I3	A (secondaire)	Valeur efficace du courant sur la voie 3
Angle Ch – I3	Degré	Phase du courant de l'entrée IL3
Current Ch – I4	A (secondaire)	Valeur efficace du courant sur la voie 4
Angle Ch – I4	Degré	Phase du courant de l'entrée IL4

NOTE1: L'étalonnage de l'appareil est fait pour que lorsqu'un signal sinusoïdal pur de 1A RMS est injecté à la fréquence nominale, la valeur affichée est 1A (la valeur affichée ne dépend pas des paramètres de réglages).

NOTE2: La position du vecteur référence de vecteur dépend de la configuration de l'appareil. Si ce dernier est équipé d'une carte d'unité voltmétrique, alors le vecteur de référence (origine des phases) est la tension appliquée sur la première entrée tension de l'unité de mesure correspondante. Si l'appareil n'est pas équipé d'une unité voltmétrique, alors le vecteur de référence (origine des phases) est le courant appliqué sur la première entrée courant de l'unité de mesure correspondante.

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A Page **44 / 56**

La figure ci-contre montre un exemple de l'affichage des grandeurs analogiques sur l'appareil établies à partir du bloc fonctionnel selon les descriptifs ci-dessus.

Current Ch - I1	0.84	A
Angle Ch - I1	-9	deg
Current Ch - I2	0.84	А
Angle Ch - I2	-129	deç
Current Ch - I3	0.85	А
Angle Ch - I3	111	deç
Current Ch - I4	0.00	А
Angle Ch - I4	0	deg

Exemple : Valeurs affichées en ligne pour le module d'entrée actuel

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

ev. A

Page 45 / 56

Enregistrement oscillographique

La protection enregistre et visualise les informations suivantes :

Grandeurs analogiques

IL1	
IL2	Côté Primaire
IL3	Cote Primaire
I4	
IL1	
IL2	C2+4 d-:
IL3	Côté secondaire
I4	

Grandeurs logiques

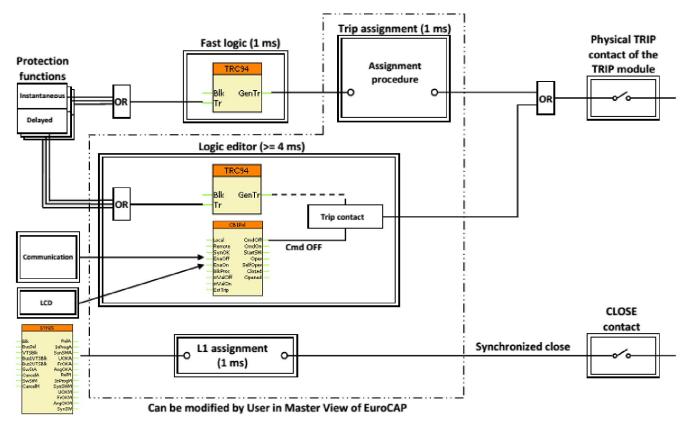
Gen.Trip
Differantial Trip
Inst OC Trip
Res Inst OC Trip
Time OC Start Low
Time OC Start High
Res Time OC Start Low
Res Time OC Start High
Therm OL Alarm.
Unbalance Start

Paramètres de réglage

Paramètre	Désignation	Réglage			Défaut	
Activation de la fonction						
DRE_Oper_EPar_	Operation	Off, On				Off
		Unit	Min	Max	Pas	
Pre-déclenchement						
DRE_PreFault_TPar_	PreFault	msec	100	1000	1	200
Post-déclenchement						
DRE_PostFault_TPar_	PostFault	msec	100	1000	1	200
Limite totale de l'enregistrement						
DRE_MaxFault_TPar_	MaxFault	msec	500	10000	1	1000

www.microener.com

MANUEL D'UTILISATION **DU RELAIS S24/T GAMME SMARTLINE**


FDE N°: 20GJ0731141

Rev.

46 / 56 **Page**

Affectation des contacts de déclenchement (TRIP)

Le principe de fonctionnement des contacts de déclenchement est présenté ci-dessous.

TRC94: Trip Logic function **CB1Pol: Circuit Breaker Control function** SYN25: Synchrocheck function

Principe du traitement des commandes TRIP

Sur la gauche du schéma de principe ci-dessus, sont indiquées les sources des ordres de déclenchement

- Fonctions de protection
- Communication par le SCADA
- Commande depuis l'avant de l'appareil (BP dédiés)
- Entrées logiques pour commande à distance ou extérieure

Sur la droite du schéma est indiqué symboliquement le relais de déclenchement (TRIP). Le schéma permet de comprendre la logique de fonctionnement de ce « contact »

Dans le milieu de la figure sont représentées les modifications ou adaptations réalisables par l'utilisateur pour interagir ou modifier ou adapter son schéma de déclenchement ou de contrôle commande (avec le logiciel EUROCAP). Toutes les autres parties du schéma sont définies et réalisées en usine.

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

ev. A

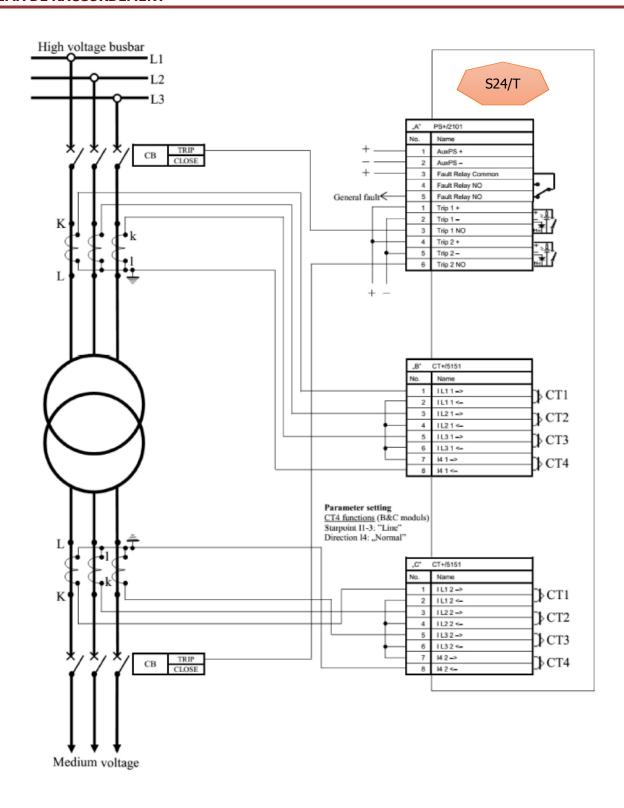
Page 47 / 56

Assignation des Led de signalisation

La signification des led de signalisation lumineuse à l'avant de l'appareil est définissable par l'utilisateur à l'aide d'EUROCAP. Néanmoins en sortie de production leur affectation et signification sont les suivantes :

Signalisation	Commentaire
General Trip	Déclenchement général
OC Trip	Déclenchement général phase d'unification (maxi I)
RES OC Trip	Déclenchement général unité terre (maxi Io)
Diff. Trip	Déclenchement différentielle transfo
LED 3105	Free LED
LED 3106	Free LED
LED 3107	Free LED
AR Blocked	Fonction de réenclenchement bloqué
Therm Alarm	Alarme protection thermique
LED 3110	Free LED
LED 3111	Free LED
LED 3112	Free LED
LED 3113	Free LED
LED 3114	Free LED
LED 3115	Free LED
LED 3116	Free LED
AutoReclose	Fonction de réenclenchement

www.microener.com


MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A

Page 48 / 56

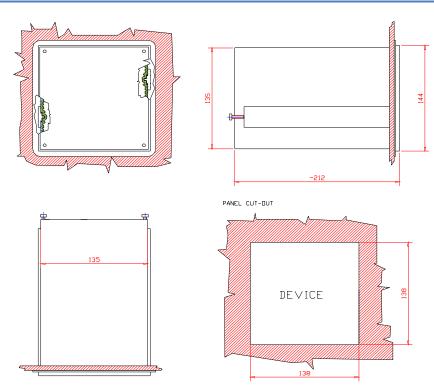
SCHEMA DE RACCORDEMENT

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

ev. A

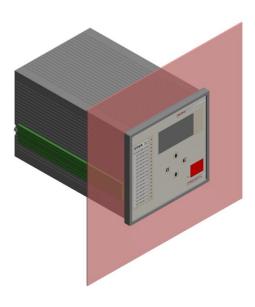

Page 49 / 56

TYPE DE BOITIERS ET DE MONTAGE DU S24/T

Type de montage :

- Boîtier encastré IP54 (face avant),
- Boîtier semi-encastré IP54 (face avant),
- Montage sur rail DIN avec IP40 (face avant),
- Construction : surface en tube d'aluminium anodisé
- Le boîtier EMC protège contre les influences électromagnétiques de l'environnement et protège l'environnement des rayonnements provenant de l'intérieur.
- Protection IP20 par l'arrière (IP3X disponible en option)
- Taille:
 - o 24 TE, coffret d'instruments de tableau de bord
 - o Poids: max. 3 kg

Montage encastré du boitier 24 TE


www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

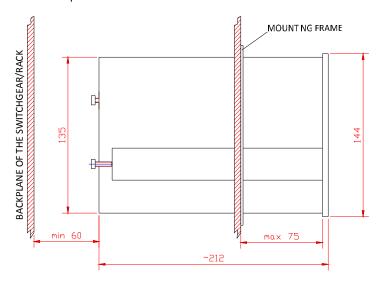
v. A

Page 50 / 56

S24 méthode de montage encastré

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

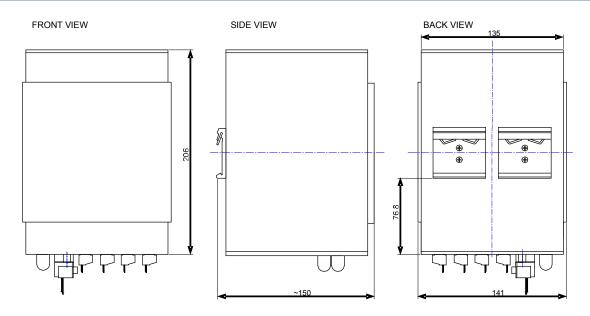

FDE N°: 20GJ0731141

ev. A

Page 51 / 56

Montage semi encastré du boitier 24 TE

Les dimensions de la découpe du panneau pour ce type de montage sont les mêmes que pour le montage encastré ($138 \text{ mm} \times 138 \text{ mm}$). Pour un montage semi affleurant, il suffit de découper en deux les éléments de fixation (de couleur verte dans l'illustration 3D ci-dessous) et de réaliser le montage comme vous pouvez le voir sur les photos ci-dessous.


www.microener.com

MANUEL D'UTILISATION **DU RELAIS S24/T GAMME SMARTLINE**

FDE N°: 20GJ0731141

52 / 56 Page

Montage sur rail DIN du boitier 24 TE

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A

Page 53 / 56

COMMUNICATION

Si l'équipement Smartline doit être connecté aux réseaux de communication existants, les options disponibles sont les suivantes

- Protocoles série (IEC 60870-5-101/103, Modbus RTU, DNP3, ABB-SPA)
- Protocoles réseau (IEC 60870-5-104, DNP3, Modbus-TCP)
- Protocoles réseau hérités via 100Base-FX et 10/100Base-TX (RJ45)

Interfaces série:

- optique (verre/fibre de verre)
- RS485/RS422

Tous les appareils de la gamme **Smartline** IED agissent sur un réseau Ethernet en tant que serveurs, échangeant avec les clients connectés toutes les informations nécessaires à la supervision continue de l'ensemble du réseau électrique.

- Accès local ou à distance à l'appareil par des navigateurs largement utilisés (par exemple Internet Explorer, Mozilla Firefox, Opera, Google Chrome, PDAs, smartphones)
- Image du panneau avant et caractéristiques du système
- Réglage des paramètres
- Information en ligne
- Journal des événements
- Téléchargement et affichage rapide des enregistrements de perturbations
- Écran de commande
- Balayage des appareils connectés
- Téléchargement de la documentation de l'appareil
- Fonctions avancées telles que les informations de diagnostic, le gestionnaire de mots de passe, le gestionnaire de mise à jour, le test de l'appareil.

L'application de la communication basée sur IEC61850 assure l'interopérabilité des appareils de la gamme **Smartline** avec les dispositifs d'autres constructeurs.

- Prise en charge native et configurable de la norme IEC61850 pour les communications verticales et horizontales
- Gamme complète d'appareils pour les tâches de protection haute tension et moyenne tension avec compatibilité IEC61850

Les méthodes de synchronisation de l'heure proposées permettent une adaptation facile dans les systèmes SCADA existants.

- Serveur NTP primaire et secondaire
- Ancien maître de protocole
- Pouls par minute
- IRIG-B000 ou IRIG-B12X

www.microener.com

MANUEL D'UTILISATION DU RELAIS S24/T GAMME SMARTLINE

FDE N°: 20GJ0731141

Rev. A

Page 54 / 56

CARACTERISTIQUES GENERALES

- Température de stockage : -40 °C... +70 °C
- Température de fonctionnement : -20 °C... +55 °C
- Humidité: 10 % 93 %.
- Conformité aux normes EMC/ESD :
 - o Décharge électrostatique (ESD) EN 61000-4-2, IEC 60255-22-2, classe 3
 - Transitoires électriques rapides (EFT/B) EN 61000-4-4-4, IEC 60255-22-4, Classe A
 - Surtensions EN 61000-4-5, IEC 60255-22-5
 - Tensions d'essai : ligne à la terre 4 kV, ligne à ligne 1 kV
 - Mode commun radiofréguence conducteur EN 61000-4-6, IEC 60255-22-6, Niveau 3
 - Ondes oscillantes amorties à 1 MHz IEC 60255-22-1
 - Tension d'essai : 2,5 kV (pour les modes commun et différentiel)
 - o Interruptions de tension IEC 60255-11
 - Durée : 5s, Critère d'acceptation : C
 - Creux de tension et coupures brèves EN 61000-4-11
 - Tension pendant les creux : 0%, 40%, 70%.
 - Champ magnétique à fréquence industrielle EN 61000-4-8, niveau 4
 - Fréquence secteur IEC 60255-22-7, classe A
 - Essai de tenue à la tension d'impulsion EN 60255-5, classe III
 - Essai diélectrique EN 60255-5, classe III
 - Test de résistance d'isolement EN 60255-5
 - Résistance d'isolement > 15 GΩ
- Essai de brouillage radioélectrique (RFI) :
 - o Perturbations rayonnées EN 55011, IEC 60255-25
 - o Perturbations conduites aux ports secteur EN 55011, IEC 60255-255
 - Essais d'immunité selon les spécifications d'essai IEC 60255-26 (2004), EN 50263 (1999), EN 61000-6-2 (2001) et IEC TS 61000-6-5 (2001)
 - Champ électromagnétique radiofréquence rayonné EN 61000-4-3, IEC 60255-22-3
- Essais de vibrations, de chocs, de secousses et de séismes sur les relais de mesure et les équipements de protection :
 - Essais aux vibrations (sinusoïdales), classe I, IEC 60255-21-1
 - o Essais de chocs et de secousses, classe I, IEC 60255-21-2
 - Essais sismiques, classe I, IEC 60255-21-3

